
64 The Delphi Magazine Issue 59

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

InterBase Express Problem

QI am using the InterBase Ex-
press components and am

trying to control the login to a data-
base. It works fine if the user uses
the login dialog. It also works fine
without the login dialog if the user
name and password are set up in
the Params property of the
TIBDatabase component and the
LoginPrompt property is set to
False.

The problem I have arises when I
make an OnLogin event handler and
leave LoginPrompt set to True in
order to trigger it. The event han-
dler picks the user name and pass-
word from an INI file (this is not a
high-security database) and sets
the appropriate values in the
LoginParams TStrings parameter as
per the help instructions. How-
ever, despite this, I get an error
indicating the user name and
password are incorrect (Figure 1).
How can I work around this error
programmatically?

AThe problem is caused by a
simple logic bug in the IBX

(InterBase Express) database com-
ponent. I reported this problem
when I bumped into it shortly after
the release of Delphi 5; however,

the problem was not fixed in Delphi
5’s Update Pack 1, nor in
C++Builder 5. At this stage I cannot
predict if it will be fixed in Delphi 6.

When a connection is required,
the TIBDatabase component calls
its DoConnect method. If Login-
Prompt is True, DoConnect calls Login
which calls the OnLogin event han-
dler if present, otherwise it invokes
the database login dialog.
Assuming it called the OnLogin
event handler, it then scans the
database parameters TStrings
object to see if it can find the pass-
word and remove it. This is done in
a nested procedure called Hide-
Password, whose job is to remove
the password entry and store it in a
private string field called FHidden-
Password.

This job is, to be honest, done
very poorly by HidePasswordon two
counts. Firstly, it checks each
parameter string to see if it con-
tains the substring password using
Pos. However, it does the check
wrongly. Instead of checking that
Pos returns a non-zero value to
indicate that password is found, it

instead checks for a zero return.
This means that the first
non-password string it checks will
be considered to be the password
parameter.

As if that problem in itself was
not enough, the code is supposed
to then delete the password
parameter line: however, the code
avoids doing this if the password is
found in the first parameter. List-
ing 1 shows this badly constructed
routine, with comments added
indicating what is wrong. Hope-
fully you can see the folly in the
current implementation.

With this knowledge of why the
routine fails you can work around
the problem as follows. Make sure
that the first parameter added is a
password parameter, but with any
arbitrary string as a value (possi-
bly even the real password value).
The next parameter added should
use an arbitrary parameter name,
but assign the real password to it.
This way, the first item found not
to contain the word password will
be considered to have the actual
password in it, and so the pass-
word will be assigned to FHidden-
Password. Then, since it was not the
first parameter found, it will be
deleted from the parameter list.

A sample pair of projects on the
companion disk show the issue at
work. IBXTest.dpr logs into the
sample InterBase employee.gdb
database thanks to the parameters
set up in the Database Editor. This
works just fine (as long as you
make sure the path to the database

procedure HidePassword;
var
I: Integer;
IndexAt: Integer;

begin
//IndexAt should be initialised to -1 so that the default
//value differs from any possible index position in Params
IndexAt := 0;
for I := 0 to Params.Count -1 do
//Pos returns a non-zero value if it finds the target string,
//not zero, so the comparison operator must be changed
if Pos('password', LowerCase(Params.Names[i])) = 0 then begin
FHiddenPassword := Params.Values[Params.Names[i]];
IndexAt := I;
break;

end;
//Here IndexAt is checked to see if a password was found. This should
//check that IndexAt does not equal -1 (the changed initial value)
if IndexAt <> 0 then
Params.Delete(IndexAt);

end;

➤ Listing 1: Dodgy code in IBX.

➤ Figure 1: The unexpected
IBX error.

July 2000 The Delphi Magazine 65

has been set up correctly in the
form’s OnCreate event handler).
IBXTest2.dpr tries much the same
thing but with an OnLogin event
handler. You will see this fail if you
set up the database path and run it.
Listing 2 shows how some condi-
tional compilation avoids the prob-
lem until it gets fixed. Just define
the conditional symbol shown and
the step discussed above allows
the program to run and open a
connection to the database.

As we go to press I’ve been
alerted to an IBX patch at
http://www.interbase.com/open/
downloads/IBX_updates.html

The patch appears to remedy this
problem, but do note that the
IBX update file is called
IBXDP5EBETAUP41.EXE, which sug-
gests (to me) that the patch is not
quite finished yet.

Strings To Numbers

QI have an application which
translates many strings to

integers and floating points, for
which I use StrToFloat and
StrToInt. When these routines are
given invalid input they raise an ex-
ception. This is fine in the norm,
but is a pain when debugging in the
IDE as the debugger keeps popping
up. Also it presumably has a per-
formance overhead with many
translations which I would prefer
to do without. Is there a way of
translating strings to numbers
without getting exceptions?

AThe debugger can be told
not to intercept application

exceptions, either by disabling it
completely or by just turning off
the exception interception feature

Version Integrated Debugger Exception Interception

Delphi 1 Options | Environment... | Preferences |
Integrated debugging

Options | Environment... | Preferences |
Break on exception

Delphi 2 Tools | Options... | Integrated debugging Tools | Options... | Break on exception

Delphi 3 Tools | Environment Options... |
Integrated debugging

Tools | Environment Options... |
Break on exception

Delphi 4 and 5 Tools | Debugger options... |
Integrated debugging

Tools | Debugger options... | Language
Exceptions | Stop on Delphi Exceptions

(see Table 1 for information on
where these options are in the vari-
ous incarnations of Delphi). Delphi
4 introduced more debugger
features including the ability to
ignore certain types of exceptions.
In Tools | Debugger Options... you
can use the Add... button to add
additional exception classes over
and above EAbort for the debugger
to ignore, such as EConvertError.

The alternative solution is to do
what the normal translation rou-
tines do and avoid generating the
exception. This is quite easy given
that we have the RTL source code
provided with Delphi Professional
and Enterprise (or Client/Server
Suite, as it used to be called).

StrToInt is implemented with a
call to the Val procedure. If an
error code is returned by Val,
StrToInt raises an exception. Str-
ToFloat is implemented with a call
to TextToFloat, raising an excep-
tion if it returns False. With this
information to hand we can imple-
ment our own versions of the rou-
tines that return Boolean values
instead of raising exceptions.

Possible implementations can
be seen in Listing 3. Since the func-
tions return Boolean values, the
translated numbers are returned
in var parameters. Notice that
TextToFloat took only two parame-
ters in Delphi 1, as the Currency
type was not introduced until
Delphi 2 (when TextToFloat was
extended to cater for both
Extended and Currency values).

Typed Constants

QIt seems to be possible to
declare a persistent variable

that is only available to the

➤ Table 1: Locating
debugger options in Delphi.

{$define CateringForIBXLoginBug}
procedure TForm1.IBDatabase1Login(Database: TIBDatabase;
LoginParams: TStrings);

begin
LoginParams.Values['password'] := 'masterke';
{$ifdef CateringForIBXLoginBug}
LoginParams.Values['xassword'] := 'masterke';
{$endif}
LoginParams.Values['user_name'] := 'sysdba'

end;

➤ Listing 2: Working around the IBX login bug.

function StringToInt(const S: string; var I: Integer): Boolean;
var
E: Integer;

begin
Val(S, I, E);
Result := E = 0

end;
{$ifdef Win32}
function StringToFloat(const S: string; var E: Extended): Boolean;
begin
Result := TextToFloat(PChar(S), E, fvExtended)

end;
{$else}
function StringToFloat(const S: string; var E: Extended): Boolean;
var
Buf: array[0..255] of Char;

begin
Result := TextToFloat(StrPCopy(Buf, S), E)

end;
{$endif}

➤ Listing 3: Translation routines without exceptions.

66 The Delphi Magazine Issue 59

➤ Listing 4: Some typed constants.

subroutine within which it is de-
clared. I came across this by acci-
dent and can’t decide whether it is
a bug or a feature of Delphi. It could
be useful for debugging.

AWhat you are referring to are
typed constants. These

contrast to the normal (untyped)
constants that most Delphi devel-
opers will be used to. Those nor-
mal constants are useful for
defining identifiers used to repre-
sent simple values. In cases where
you want to have more interesting
values predefined at compile-time
and associated with an identifier,
typed constants are very helpful.
They allow you to set up initialised
records, arrays and pointers.

Listing 4 shows two typed con-
stants. One is an array of strings,
indexed by the values False and
True, and the other is an example of
a record. Both array elements and
both record data fields have been
initialised with values.

This is the original intent of
typed constants, to help set up
pre-initialised non-simple type
values. However, a side effect of
their implementation is that stor-
age is allocated by the compiler to
hold these values. Additionally,
this storage is global as opposed to
local, which means it is allocated at
program start and exists through
the lifetime of the program.

This last point would be irrele-
vant were it not for the key point
that typed constants are not (by
default) constant. Instead, Borland
made them writeable. This makes

function GetCount: Integer;
const
Count: Integer = 0;

begin
Inc(Count);
Result := Count;

end;

➤ Listing 5: Using a typed
constant as a static variable.

type
TDataRec = packed record
Text: String;
Number: Double;

end;
const
Captions: array[Boolean] of String = ('Disabled', 'Enabled');
DataRec: TDataRec = (Text: 'Hello world'; Number: Pi);

them act like initialised variables.
However, normal variables
(defined in var sections) can only
be initialised if they are non-local,
meaning defined outside any
subroutine. This is because the
compiler only supports initialising
global data, which it does by stor-
ing initialised data values in the
EXE itself. So initialised variables
are pre-initialised in the execut-
able, not by any code that
executes.

The fact that typed constants
can be defined as either local to a
subroutine or globally therefore
needs to be examined carefully.
Since the compiler does not
support initialising items by auto-
generated code, it follows that
typed constants are initialised in
the same way as global variables,
by data being stored in the execut-
able. Typed constants are initial-
ised at program startup and at no
other time.

So, even if a typed constant is
defined to have local accessibility,
it has global storage and is initial-
ised at startup. The implication of
this is that any change made to any
typed constant (global or local) in
any subroutine will be persistent.
The next time the subroutine is
invoked, the typed constant will
still have the changed value. Typed
constants are the equivalent of
static variables in C. Listing 5 shows
a simple function using a typed
constant to return an incrementing
counter. It returns 1 the first time it
is called, 2 the second time, 3 the
third time and so on.

Clearly the term typed constant
is a misnomer, albeit one that has
persisted through Delphi’s Turbo
Pascal and Borland Pascal heri-
tage. In fact, using typed constants
as an equivalent to C static vari-
ables was covered on the first page
of my old Borland Pascal problem
solving book from 1994.

However, Delphi 1 users took
offence at the possibility of

something called a constant being
modified, so Delphi 2 introduced
a compiler switch to fix the
loophole. You can toggle a switch
on the Compiler page of the project
options dialog to deny
programmers the ability to write
to typed constants. This switch
corresponds to the $J or $Write-
ableConst compiler directives.

{$J+} or {$WriteableConst On}
permits typed constants to be
modified (this is the default, for
backward compatibility with
Delphi 1 and earlier compilers,
despite what Delphi 2’s help
claims). {$J-} or {$WriteableConst
Off} makes typed constants truly
constant.

Editing List View Items

QTListView controls look
quite useful but appear

baffling to use, to me anyway. One
thing I can’t figure out how to do is
allow the user to edit the items in
the list view. I have tried various
combinations of properties and it
resolutely refuses to be edited.

AStrangely, despite your
efforts (or possibly in spite

of them), the Windows list view
control deals with this all by itself.
Like many controls it supports a
number of user-driven operations
(mouse and keyboard) in order to
support editing.

The Windows 98 Resource Kit
documents F2 as being a shortcut
for a rename operation. Editing a
list view item is considered a
rename at the user interface level.
Take the Windows desktop for
example. If you select any icon
there and press F2, you can rename
it. This causes an in-place editor to
appear, allowing you to modify the
text associated with the list view
item.

In actual fact, you are not really
renaming anything. In component
terms, you are actually changing
the list view item’s Caption prop-
erty. Anyhow, without quibbling
over terminology, F2 does what
you need. Additionally, as you
probably have often found in
Windows Explorer to your annoy-
ance, if a list view item is already

68 The Delphi Magazine Issue 59

selected a single-click will also
allow the caption to be edited (see
Figure 2).

So, from scratch, you can click
on an item, then pause, then click
again to invoke the edit operation.
The pause is necessary to ensure
that the list view does not take the
two individual clicks as a double-
click.

The programmatic equivalent of
either F2 or click-pause-click is to
call the TListItem object’s Edit-
Caption method. EditCaption
ensures the owning list view has
focus and then sends a LVM_
EDITLABEL message to it, specifying
the list item’s Index property.

Date Comments

QI have a need to be able to
stick a quick comment in my

Delphi code, showing what’s been
changed today. I use a Code
Template to do it. I have a code

snippet called day and pressing
Ctrl+J on it causes something like
{ 23/3/00-JB } to be inserted. The
only disadvantage is having to
update the date in the editor
options every day, but that’s far
outweighed by the usefulness. Is
there a better way?

ACode Templates are very
handy for that sort of com-

ment, but only when the comment
will not change very often. You set
new Code Templates up on the
Code Insight page of the Tools |
Editor Options... (Delphi 5 and
later) or the
Tools |
Environment Op-
tions... (Delphi
3 and 4) dialogs
(Figure 3 shows

an example). For readers who are
unfamiliar with Code Templates, I
should mention that they were
introduced in Delphi 3 and are
inserted with Ctrl+J, which gives a
list of all available templates. You
can also get a cut-down list by
entering the first letter/s of the
template name before pressing
Ctrl+J.

If you need a Code Template
whose definition varies, Delphi
does not really help you, but it is
possible to help yourself here.

You could write a small utility
program whose job is to update

program UpdateDCI;
uses
SysUtils, Registry, Windows, Classes, ShellAPI,
Dialogs, Controls;

const
DelphiRegPath = 'Software\Borland\Delphi';
Delphi3 = '3.0';
Delphi4 = '4.0';
Delphi5 = '5.0';
CodeTemplateFileName = '\Bin\Delphi32.dci';
DelphiExe = '\Bin\Delphi32.exe';
//Update these constants as appropriate
//Your Code Template as stored in the DCI file
//(Name | Description)
Template = 'day | Comment for today';
//Your version of Delphi
MyDelphi = Delphi5;
//Your desired comment string, with a placeholder for the
//date
Comment = '%s - BL';
//Your preferred date format
DateFormat = 'd/mm/yyy';
//Where Delphi should start, relative to its root.
//Make sure you prefix with a \
DelphiStartDir = '\Projects';
//Custom command-line parameters for Delphi
DelphiStartParams = '/np /hm /hv';

var
DelphiRoot: String;
CodeTemplates: String;
TemplateStart, TemplateEnd: Integer;
Reg: TRegIniFile;
TemplateFile: TStream;

procedure RunDelphi;
begin
ShellExecute(0, nil, PChar(DelphiRoot + DelphiExe),
DelphiStartParams, PChar(DelphiRoot + DelphiStartDir),
SW_SHOWNORMAL)

end;
begin
try //Application exception handler
Reg := TRegIniFile.Create('');
try
Reg.RootKey := HKEY_LOCAL_MACHINE;
if not Reg.OpenKey(DelphiRegPath, False) then
raise Exception.Create(
'Delphi information not found.');

DelphiRoot := Reg.ReadString(MyDelphi, 'RootDir', '');
if DelphiRoot = '' then
raise Exception.Create(
'Delphi root path not found.')

finally
Reg.Free

end;
//Read DCI file into a string
TemplateFile := TFileStream.Create(DelphiRoot +
CodeTemplateFileName, fmOpenRead or fmShareDenyWrite);

try
SetLength(CodeTemplates, TemplateFile.Size);
TemplateFile.Read(CodeTemplates[1], TemplateFile.Size)

finally
TemplateFile.Free

end;
//Locate our template
TemplateStart := Pos(Template, CodeTemplates);
if TemplateStart = 0 then
raise Exception.Create(
'Custom Code Template not found.');

//Now locate the comment
while CodeTemplates[TemplateStart] <> '{' do
Inc(TemplateStart);

TemplateEnd := TemplateStart;
while CodeTemplates[TemplateEnd] <> '}' do
Inc(TemplateEnd);

//Substitute old date for today's date
Delete(CodeTemplates, TemplateStart, TemplateEnd -
TemplateStart + 1);

Insert(Format('{ ' + Comment + ' }',
[FormatDateTime(DateFormat, Date)]),
CodeTemplates, TemplateStart);

//Write DCI string back to file
TemplateFile := TFileStream.Create(
DelphiRoot + '\' + CodeTemplateFileName, fmCreate);

try
TemplateFile.Write(CodeTemplates[1],
Length(CodeTemplates));

finally
TemplateFile.Free

end
except
//If there is a problem, check it's ok to launch Delphi,
//otherwise leave
on E: Exception do
if MessageDlg(
Format('%s'#13#13'Continue loading Delphi',
[E.Message]), mtError, [mbOk, mbCancel], 0) =
mrCancel then

Exit
end;
//Launch Delphi now template has been updated
RunDelphi

end.

➤ Figure 2:
Editing an
item’s caption
in Windows
Explorer.➤ Listing 6: Programmatically

updating Code Templates.

July 2000 The Delphi Magazine 69

the Code Template to have today’s
date in. The utility can then spawn
Delphi. If you set your Delphi short-
cut to point to the small utility
application, the whole operation
will then become transparent.

Naturally, you need to know how
to find the Code Template before
writing the utility. You will find
them all in Delphi’s BIN directory
in the file DELPHI32.DCI. This file
contains only text, and so some
reasonably straightforward text
parsing is all you need.

Listing 6 shows a simple pro-
gram that does the job. It is
intended to be modified before use
and you should see a number of
constants that can be changed as
appropriate.

Template represents the name
and description of your Code

Template as specified
when you defined it. It is
used to locate the tem-
plate within the file and
so should be set up care-
fully, as detailed in the
comment. MyDelphi
should be set to refer to
the appropriate constant
for your Delphi version,
either Delphi3, Delphi4
or Delphi5 (currently).

Comment represents the
commented text you want to insert
where the %s placeholder will be
replaced by the date, formatted as
described in DateFormat. Since the
application is designed to launch
Delphi you can specify which
directory (relevant to the Delphi
root) should be made current with
DelphiStartDir. This must have a
backslash prefix and defaults to
Delphi’s Projects directory, but
you may have a different
preference.

Finally, DelphiStartParams can be
set to an empty string or nil, but
you can also use it to specify com-
mand line parameters to Delphi.

The default parameters specified
in the listing cause Delphi to start
with no default project open (/np),
and enable both heap monitoring
(/hm) and heap verification (/hv).

Persistent
Run-Time Column Data

QI have an application that
uses a number of TDBGrid

components where the users are
at liberty to reorder the columns
and change their widths. What is
the easiest way of storing this
information when the program
closes so I can restore the
information when the program
restarts?

ASince Delphi 3, the object
represented by the Columns

property of a TDBGrid has had use-
ful methods for storing and retriev-
ing all the column attributes (see
Listing 7). If you do not mind hav-
ing several files you could call the
Columns.SaveToFile method for
each TDBGrid in the application.
However, if you want all the infor-
mation to be stored in one file, it
may be necessary to use streams.

➤ Figure 3:
Defining a custom
Code Template.

TDBGridColumns = class(TCollection)
...
public
procedure LoadFromFile(const Filename: string);
procedure LoadFromStream(S: TStream);
procedure SaveToFile(const Filename: string);
procedure SaveToStream(S: TStream);
...

end;

const
ColumnData = 'COLUMNS.DAT';

procedure TForm1.LoadGridsFromStream(AOwner: TComponent);
var I: Integer;
begin
for I := 0 to AOwner.ComponentCount - 1 do begin
if AOwner.Components[I] is TDBGrid then
TDBGrid(AOwner.Components[I]).Columns.LoadFromStream(
Stream);

LoadGridsFromStream(AOwner.Components[I])
end

end;
procedure TForm1.SaveGridsToStream(AOwner: TComponent);
var I: Integer;
begin
for I := 0 to AOwner.ComponentCount - 1 do begin
if AOwner.Components[I] is TDBGrid then
TDBGrid(AOwner.Components[I]).Columns.SaveToStream(
Stream);

SaveGridsToStream(AOwner.Components[I])
end

end;
procedure TForm1.LoadColumnData;
begin
if not FileExists(ColumnData) then
Exit;

Stream := TFileStream.Create(ColumnData, fmOpenRead
or fmShareDenyWrite);

try
LoadGridsFromStream(Application)

finally
Stream.Free

end
end;
procedure TForm1.SaveColumnData;
begin
Stream := TFileStream.Create(ColumnData, fmCreate);
try
SaveGridsToStream(Application)

finally
Stream.Free

end
end;
procedure TForm1.FormShow(Sender: TObject);
begin
LoadColumnData

end;
procedure TForm1.FormClose(Sender: TObject; var Action:
TCloseAction);
begin
SaveColumnData

end;

➤ Listing 8: Storing and
retrieving column attributes.

➤ Listing 7: Useful methods
for TDBGrid.Columns.

70 The Delphi Magazine Issue 59

My solution relies on all the grids
existing as the program closes, and
also all existing as the main form is
first displayed. This is just to keep
the code fairly short. You can cater
for more complex cases by modify-
ing the code as you like.

When the program closes, the
SaveColumnData method is called
(Listing 8). This method creates a
file stream which in turn creates a
column data file (overwriting one if
it already exists). Whilst the new
file is open SaveGridsToStream is
called. The purpose of this recur-
sive method is to locate all TDBGrid
components by starting with the
Application object and then using
the ownership mechanism to hunt
out forms and components on
forms. Each grid has its column
data saved to the stream before
continuing the search.

When the program starts,
LoadColumnData does much the
same thing. It opens a file stream
for the column data, if present,
before calling LoadGridsFromStream.
This attempts to locate all grid
components one at a time, telling
them to read their column data
from the stream.

Hopefully this should give you
some ideas as to how to achieve
your goal. The code can be found
on this month’s disk as the project
ColumnSaving.dpr.

Delphi Grammar Problem

QI am using the CreateProcess
API to unzip a file to a

directory (see Listing 9) and the
code waits for the process to finish
using WaitForSingleObject. I am
getting cases where the process
loops continually and WaitFor-
SingleObject does not force it to
timeout. What might the problem
be?

AI think the problem here is
caused by improper expres-

sion construction. You have a
while statement operating with
this condition:

WaitForSingleObject(
PI.hProcess, 40000) <>
(WAIT_OBJECT_0 or
WAIT_TIMEOUT)

This statement calls WaitFor-
SingleObject and then checks the
return value. You are intending to
ensure the value equals neither
WAIT_OBJECT_0 nor WAIT_TIMEOUT,
but that is not what you get.

The compiler will evaluate this
Boolean expression as follows.

First, the API is called, which will
return with a value. The compiler
then tests to see whether this value
differs from the value

(WAIT_OBJECT_0 or WAIT_TIMEOUT). If
we replace the constants with
their literal values, this means the
compiler will be checking the
return value does not equal (0 or
$102). The or operation is inter-
preted as a bit-wise or and so the
bracketed section evaluates to
$102 (0 or $102 equals $102).

This means that your loop will
continue calling WaitForSingle-
Object whilst it does not return
$102, or WAIT_TIMEOUT. This is likely
to carry on for a long time, assum-
ing the original unzip operation
takes less than 40 seconds to exe-
cute. Each time it is called,
WaitForSingleObject is likely to
return WAIT_OBJECT_0, indicating
that the process handle has
become signalled because the
process has terminated.

To fix the problem, change the
code to look like either version in
Listing 10. You can see two possi-
bilities there, one of them being
commented. The commented ver-
sion takes advantage of both con-
stants representing values less
than 256 and so uses set notation.
It verifies that the value returned
by WaitForSingleObject is not a
member of the set containing both
WAIT_OBJECT_0 and WAIT_TIMEOUT.

The other version that is not
commented uses a more tradi-
tional approach. It stores the Wait-
ForSingleObject result in a tempo-
rary variable and then explicitly
checks if the value is WAIT_OBJECT_0
or if it is WAIT_TIMEOUT.

[As an aside, there are a number
of good Delphi components avail-
able for zipping and unzipping files.
One of the best is VCLZip, from
http://vclzip.bizland.com. Ed]

procedure TForm1.Button1Click(Sender: TObject);
var
SysDir, CommandLine: String;
SI: TStartupInfo;
PI: TProcessInformation;

begin
SetLength(SysDir, MAX_PATH);
SetLength(SysDir, GetSystemDirectory(@SysDir[1], MAX_PATH));
CommandLine := SysDir + '\Command.com /c UNZIP.exe Archive.zip';
Win32Check(CreateProcess(nil, PChar(CommandLine), nil, nil, True, 0, nil,
'c:\Data', SI, PI));

while WaitForSingleObject(PI.hThread, 40000) <> (WAIT_OBJECT_0 or WAIT_TIMEOUT)
do begin
//nothing

end;
CloseHandle(PI.hProcess);
CloseHandle(PI.hThread);

end;

➤ Listing 9: Failing code.

procedure TForm1.Button1Click(Sender: TObject);
var
SysDir, CommandLine: String;
SI: TStartupInfo;
PI: TProcessInformation;
Res: DWord;

begin
SetLength(SysDir, MAX_PATH);
SetLength(SysDir, GetSystemDirectory(@SysDir[1], MAX_PATH));
CommandLine := SysDir + '\Command.com /c UNZIP.exe Archive.zip';
Win32Check(CreateProcess(nil, PChar(CommandLine), nil, nil, True, 0, nil,
'c:\Data', SI, PI));
//Ensure the return value is not in the specified set of values before going
//again while not WaitForSingleObject(PI.hThread, 40000) in
// [WAIT_OBJECT_0, WAIT_TIMEOUT] do begin
// //nothing
//end;
//Ensure result is either one or the other before terminating the loop
repeat
Res := WaitForSingleObject(PI.hThread, 40000)

until (Res = WAIT_OBJECT_0) or (Res = WAIT_TIMEOUT);
CloseHandle(PI.hProcess);
CloseHandle(PI.hThread);

end;

➤ Listing 10: Waiting for
a process to finish.

72 The Delphi Magazine Issue 59

Memos And BLOb Fields

QI have set up a text memo
field in a Paradox table. How

do I get data from a memo control
into this field and vice versa?

AA memo field is an example
of a BLOb field. A BLOb is a

Binary Large Object, for example
an arbitrary amount of text, an
image or any arbitrary binary data.
Because of how the acronym
originated, I am pedantic in
spelling it BLOb, as opposed to
BLOB or Blob which are common
alternatives [Glad someone is up-
holding correct standards around
here! Ed].

When you access a database
table using standard components
with Delphi, you will need to take
special care with BLOb fields.
Normal fields pose no problem, as
you can easily use a dataset’s
FieldValues property (an array of
Variant values, indexed by the field
name) or alternatively the various
access properties of a field object
(such as AsString, AsInteger and so
on).

BLOb fields, however, need to be
accessed using a special kind of
stream called a TBlobStream. To

show the idea, a
program called
BLObRead.dpr is
on this month’s
disk that uses
normal controls
to access a couple of fields from
the sample BioLife.db Paradox
table. The program works in any
version of Delphi.

A TTable component is used to
access the table and has persistent
field objects manufactured with
the Fields Editor to simplify access
to the Common Name and Notes fields.
Notes is the BLOb field, by the way.
Both persistent field objects have
been given a name prefixed with
fld for easy identification. You
can see the program running in
Figure 4.

All the application code is shown
in Listing 11. The two key routines
are UpdateTableFromUI and Update-
UIFromTable. You can see the
TBlobStreamobject being created in
both routines, one with a bmWrite
mode and one with a bmRead mode.
Fortunately, liiasing between the

stream and the memo is easy
thanks to the TStrings class defin-
ing the LoadFromStream and SaveTo-
Stream methods.

The rest of the code helps the
basic application user interface
work, so I will let you peruse it at
your leisure.

Acknowledgements
Thanks are due this month to Jack
Birrell who alerted me to the
existence of the column saving/
loading methods within TDBGrid.

procedure TForm1.UpdateTableFromUI;
var
Stream: TStream;

begin
try
tblBioLife.Edit;
{ Save edit control into string field }
fldCommonName.AsString := edtCommonName.Text;
Stream := TBlobStream.Create(fldNotes, bmWrite);
try
{ Save memo control into BLOb field }
memNotes.Lines.SaveToStream(Stream)

finally
Stream.Free

end;
tblBioLife.Post

except
tblBioLife.Cancel

end
end;
procedure TForm1.UpdateUIFromTable;
var
Stream: TStream;

begin
{ Disable buttons as appropriate }
btnPrior.Enabled := not tblBioLife.Bof;
btnNext.Enabled := not tblBioLife.Eof;
{ Load edit control from string field }
edtCommonName.Text := fldCommonName.AsString;
Stream := TBlobStream.Create(fldNotes, bmRead);
try
{ Load BLOb field into memo control }
memNotes.Lines.LoadFromStream(Stream);

finally
Stream.Free

end;
{ Reset change detector }

FieldChanged := False
end;
procedure TForm1.MoveRecord(MoveBy: Integer);
begin
{ If change made, ask if it should be saved }
if FieldChanged and
(MessageDlg('Record has changed. Update table?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes) then
UpdateTableFromUI;

{ Go to requested record }
tblBioLife.MoveBy(MoveBy);
{ Refresh UI }
UpdateUIFromTable

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
tblBioLife.Open;
UpdateUIFromTable

end;
procedure TForm1.btnPriorClick(Sender: TObject);
begin
MoveRecord(-1)

end;
procedure TForm1.btnNextClick(Sender: TObject);
begin
MoveRecord(1)

end;
{ Event handler shared by edit's and memo's OnChange events }
procedure TForm1.FieldChange(Sender: TObject);
begin
{ When edit/memo is changed, set change detector }
FieldChanged := True

end;

➤ Listing 11: Accessing BLOb
fields with a TBlobStream. ➤ Figure 4:

Reading and
writing a
BLOb field
(and a string
field).

	InterBase Express Problem
	Strings To Numbers
	Typed Constants
	Editing List View Items
	Date Comments
	Persistent Run-Time Column Data
	Delphi Grammar Problem
	Memos And BLOb Fields
	Acknowledgements

